Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mustafa Odabașoğlu ${ }^{\text {a }}$ and Orhan Büyükgüngör ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts \& Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ${ }^{\text {b }}$ Department of Physics, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Disorder in solvent or counterion
R factor $=0.043$
$w R$ factor $=0.120$
Data-to-parameter ratio $=14.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Amino-3-methylpyridinium acetate

The title compound, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$, contains eight- and sixteen-membered hydrogen-bonded rings involving 2-amino-3-methylpyridinium and acetate ions. The 2-amino-3-methylpyridinium and acetate ions are linked into zigzag chains by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The dihedral angle between the 2-amino-3-methylpyridinium ring and the hydrogen-bonded acetate ion is $6.63(6)^{\circ}$. The heterocycle is fully protonated, enabling amine-imine tautomerization.

Comment

Hydrogen bonding plays a key role in molecular recognition (Goswami \& Ghosh, 1997) and crystal engineering research (Goswami et al., 1998). The design of highly specific solid-state compounds is of considerable significance in organic chemistry due to the important applications of these compounds in the development of new optical, magnetic and electronic systems (Lehn, 1992). 2-Aminopyridine and its derivatives are used in the manufacture of pharmaceuticals, hair dyes and other dyes. The present work is part of a structural study of compounds of 2-amino-3-methylpyridinium systems with hydrogen-bond donors and we report here the structure of 2-amino-3methylpyridinium acetate, (I) (Fig. 1).

In (I), the 2-amino-3-methylpyridinium ions are linked to the acetate ions through $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$ and $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2$ hydrogen bonds, resulting in the formation of eight-membered hydrogen-bonded rings (Fig. 1 and Table 2). The eightmembered hydrogen-bonded rings are linked by $\mathrm{N} 2-$ $\mathrm{H} 2 B \cdots \mathrm{O} 2$ and $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 1$ hydrogen bonds, forming a twodimensional network. The hydrogen-bonded planes (twodimensional network) are arranged so that $\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 1^{\text {iii }}$ hydrogen bonds form $R 3_{4}^{4}[16]$ rings, resulting in a threedimensional network (Fig. 2; symmetry code as in Table 2).

The 2-aminopyridine-carboxylic acid system has been the subject of theoretical (Inuzuka \& Fujimoto, 1990) and spectroscopic (Inuzuka \& Fujimoto, 1986) amine-imine tautomerization studies. 2-Aminopyridine and derivatives, like other organic bases, are protonated in acidic solution. The bonding of the H atom to the ring N atom of 2-aminopyridine rather than the amine N atom gives an ion for which an additional resonance structure can be written. As this mono-

Received 9 November 2005 Accepted 8 December 2005 Online 14 December 2005

Figure 1
A view of the ion pair of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds. Both disorder components are shown.

Figure 2
A packing diagram of the title compound, showing the hydrogen-bonding scheme (dashed lines).
cation has more resonance energy (additional ionic resonance) than 2 -aminopyridine itself, 2-aminopyridine is a strong base, like amidines (Acheson, 1967).

The present investigation, like our previous work (Büyükgüngör \& Odabaşoğlu, 2002, 2003; Odabaşoğlu, Büyükgüngör \& Lönnecke, 2003; Odabaşoğlu, Büyükgüngör, Turgut et al., 2003; Büyükgüngör et al., 2004), clearly shows that the positive charge in the 2 -aminopyridinium ion is on the amine group. Our investigations also show that the 2-amino-3-methylpyridinium cation is present in the crystal structure in a similar form and the methyl H atoms in the acetate show rotational disorder.

The $\mathrm{C} 1-\mathrm{N} 2$ bond length is approximately equal to that of a $\mathrm{C}=\mathrm{N}$ double bond (Shanmuga Sundara Raj, Fun, Lu et al., 2000), indicating that atom N2 of the amine group must also be $s p^{2}$ hybridized. This is also supported by the $\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 A$ angle of 117.2 (11) ${ }^{\circ}$ (Table 1). Similar bond distances and angles have been observed in 2-aminopyridinium succinate succinic acid (Büyükgüngör \& Odabaşoğlu, 2002), 2-aminopyridinium adipate monoadipic acid dihydrate (Odabaşoğlu, Büyükgüngör, Turgut et al., 2003), bis(2-aminopyridinium) maleate (Büyükgüngör \& Odabaşoğlu, 2003), 2-amino-
pyridinium fumarate fumaric acid (Büyükgüngör et al., 2004) and in some 2-aminopyridine-containing molecules (Yang et al., 1995; Grobelny et al., 1995; Shanmuga Sundara Raj, Fun, Zhao et al., 2000).

Experimental

The title compound was prepared by mixing 3-methyl-2-aminopyridine and acetic acid in a 1:1 molar ratio in water at 353 K . Crystals of (I) were obtained by slow evaporation of the solvent (m.p. 370372 K).

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.275 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$M_{r}=168.20$
Triclinic, $P \overline{1}$
$a=7.0451$ (8) A
$b=8.0502(10) \AA$
$c=8.5061$ (10) \AA
$\alpha=65.756(9)^{\circ}$
$\beta=86.505(9)^{\circ}$
$\gamma=85.326(9)^{\circ}$
$V=438.21(10) \AA^{3}$
Mo $K \alpha$ radiation
Cell parameters from 7421
reflections
$\theta=2.6-28.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Thick plate, colourless
$0.64 \times 0.49 \times 0.24 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer

$$
\begin{aligned}
& R_{\text {int }}=0.073 \\
& \theta_{\max }=27.7^{\circ} \\
& h=-9 \rightarrow 8 \\
& k=-10 \rightarrow 10 \\
& l=-11 \rightarrow 11
\end{aligned}
$$

ω scans
7421 measured reflections
2054 independent reflections
1646 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.054 P)^{2} \\
&+0.0553 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.121$
$S=1.04$
2054 reflections
145 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{N} 2$	$1.3258(16)$	$\mathrm{C} 7-\mathrm{O} 2$	$1.2385(15)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.3491(15)$	$\mathrm{C} 7-\mathrm{O} 1$	$1.2532(15)$
$\mathrm{C} 5-\mathrm{N} 1$	$1.3536(16)$		
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$117.94(10)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 1$	$124.41(12)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	$123.09(11)$		
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.99(13)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$-179.15(12)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2$	0.91 (2)	1.89 (2)	2.7992 (15)	179 (2)
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 2^{\text {i }}$	0.90 (2)	2.03 (2)	2.8426 (16)	150 (2)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	1.01 (2)	1.64 (2)	2.6390 (14)	174 (2)
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 1^{\text {ii }}$	0.95 (2)	2.42 (2)	3.3566 (16)	166 (1)
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 1^{\text {iii }}$	1.01 (2)	2.60 (2)	3.605 (2)	172 (2)

Symmetry codes: (i) $-x+1,-y+2,-z$; (ii) $-x,-y+1,-z+1$; (iii) $x+1, y, z$.
Refined $\mathrm{C}-\mathrm{H}$ distances are in the range 0.94 (2)-0.98 (2) \AA and $U_{\text {iso }}$ values for H atoms are in the range 0.056 (4)-0.097 (7) \AA^{2}. The H

organic papers

atoms bounded to C 8 were refined as an idealized disordered methyl group (two positions, each of site occupancy 0.5) in their calculated positions, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ of the parent atom.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Acheson, R. M. (1967). An Introduction to the Chemistry of Heterocycles, 2nd ed., pp. 215-218. London: Wiley.
Büyükgüngör, O. \& Odabaşoğlu, M. (2002). Acta Cryst. C58, o691-o692. Büyükgüngör, O. \& Odabaşoğlu, M. (2003). Acta Cryst. C59, o105-o106. Büyükgüngör, O., Odabaşoğlu, M., Albayrak, C. \& Lönnecke, P. (2004). Acta Cryst. C60, o470-o472.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Goswami, S. P. \& Ghosh, K. (1997). Tetrahedron Lett. 38, 4503-4506.
Goswami, S. P., Mahapatra, A. K., Nigam, G. D., Chinnakali, K. \& Fun, H.-K. (1998). Acta Cryst. C54, 1301-1302.

Grobelny, R., Glowiak, T., Mrozinski, J., Baran, W. \& Tomasik, P. (1995). Pol. J. Chem. 69, 559-565.

Inuzuka, K. \& Fujimoto, A. (1986). Spectrochim. Acta A, 42, 929-937.
Inuzuka, K. \& Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 971-975.
Lehn, J. M. (1992). J. Coord. Chem. 27, 3-6.
Odabaşoğlu, M., Büyükgüngör, O. \& Lönnecke, P. (2003). Acta Cryst. C59, o51-o52.
Odabaşoğlu, M., Büyükgüngör, O., Turgut, G., Karada, A., Bulak, E. \& Lönnecke, P. (2003). J. Mol. Struct. 648, 133-138.
Shanmuga Sundara Raj, S., Fun, H.-K., Lu, Z.-L., Xiao, W., Gong, X.-Y. \& Gen, C.-M. (2000). Acta Cryst. C56, 1015-1016.
Shanmuga Sundara Raj, S., Fun, H.-K., Zhao, P.-S., Jian, F.-F., Lu, L.-D., Yang, X.-J. \& Wang, X. (2000). Acta Cryst. C56, 742-743.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Yang, R. N., Wang, D. M., Hou, Y. M., Xue, B. Y., Jin, D. M., Chen, L. R. \& Luo, B. S. (1995). Acta Chem. Scand. 49, 771-773.

