organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mustafa Odabaşoğlu^a* and Orhan Büyükgüngör^b

^aDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ^bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(C-C) = 0.002 \text{ Å}$ Disorder in solvent or counterion R factor = 0.043 wR factor = 0.120 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 2-Amino-3-methylpyridinium acetate

The title compound, $C_6H_9N_2^+ \cdot C_2H_3O_2^-$, contains eight- and sixteen-membered hydrogen-bonded rings involving 2-amino-3-methylpyridinium and acetate ions. The 2-amino-3-methylpyridinium and acetate ions are linked into zigzag chains by $C-H\cdots O$ and $N-H\cdots O$ hydrogen bonds. The dihedral angle between the 2-amino-3-methylpyridinium ring and the hydrogen-bonded acetate ion is 6.63 (6)°. The heterocycle is fully protonated, enabling amine–imine tautomerization.

Comment

Hydrogen bonding plays a key role in molecular recognition (Goswami & Ghosh, 1997) and crystal engineering research (Goswami *et al.*, 1998). The design of highly specific solid-state compounds is of considerable significance in organic chemistry due to the important applications of these compounds in the development of new optical, magnetic and electronic systems (Lehn, 1992). 2-Aminopyridine and its derivatives are used in the manufacture of pharmaceuticals, hair dyes and other dyes. The present work is part of a structural study of compounds of 2-amino-3-methylpyridinium systems with hydrogen-bond donors and we report here the structure of 2-amino-3-methylpyridinium acetate, (I) (Fig. 1).

In (I), the 2-amino-3-methylpyridinium ions are linked to the acetate ions through N1-H1...O1 and N2-H2A...O2 hydrogen bonds, resulting in the formation of eight-membered hydrogen-bonded rings (Fig. 1 and Table 2). The eightmembered hydrogen-bonded rings are linked by N2-H2B...O2 and C5-H5...O1 hydrogen bonds, forming a twodimensional network. The hydrogen-bonded planes (twodimensional network) are arranged so that C6-H6A...O1ⁱⁱⁱ hydrogen bonds form $R3_4^4$ [16] rings, resulting in a threedimensional network (Fig. 2; symmetry code as in Table 2).

The 2-aminopyridine–carboxylic acid system has been the subject of theoretical (Inuzuka & Fujimoto, 1990) and spectroscopic (Inuzuka & Fujimoto, 1986) amine–imine tautomerization studies. 2-Aminopyridine and derivatives, like other organic bases, are protonated in acidic solution. The bonding of the H atom to the ring N atom of 2-aminopyridine rather than the amine N atom gives an ion for which an additional resonance structure can be written. As this mono-

Received 9 November 2005 Accepted 8 December 2005 Online 14 December 2005

 \bigcirc 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the ion pair of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds. Both disorder components are shown.

Figure 2

A packing diagram of the title compound, showing the hydrogen-bonding scheme (dashed lines).

cation has more resonance energy (additional ionic resonance) than 2-aminopyridine itself, 2-aminopyridine is a strong base, like amidines (Acheson, 1967).

The present investigation, like our previous work (Büyükgüngör & Odabaşoğlu, 2002, 2003; Odabaşoğlu, Büyükgüngör & Lönnecke, 2003; Odabaşoğlu, Büyükgüngör, Turgut *et al.*, 2003; Büyükgüngör *et al.*, 2004), clearly shows that the positive charge in the 2-aminopyridinium ion is on the amine group. Our investigations also show that the 2-amino-3-methylpyridinium cation is present in the crystal structure in a similar form and the methyl H atoms in the acetate show rotational disorder.

The C1—N2 bond length is approximately equal to that of a C—N double bond (Shanmuga Sundara Raj, Fun, Lu *et al.*, 2000), indicating that atom N2 of the amine group must also be sp^2 hybridized. This is also supported by the C1—N2—H2A angle of 117.2 (11)° (Table 1). Similar bond distances and angles have been observed in 2-aminopyridinium succinate succinic acid (Büyükgüngör & Odabaşoğlu, 2002), 2-aminopyridinium adipate monoadipic acid dihydrate (Odabaşoğlu, Büyükgüngör, Turgut *et al.*, 2003), bis(2-aminopyridinium) maleate (Büyükgüngör & Odabaşoğlu, 2003), 2-aminopyridinium)

pyridinium fumarate fumaric acid (Büyükgüngör *et al.*, 2004) and in some 2-aminopyridine-containing molecules (Yang *et al.*, 1995; Grobelny *et al.*, 1995; Shanmuga Sundara Raj, Fun, Zhao *et al.*, 2000).

Experimental

The title compound was prepared by mixing 3-methyl-2-aminopyridine and acetic acid in a 1:1 molar ratio in water at 353 K. Crystals of (I) were obtained by slow evaporation of the solvent (m.p. 370-372 K).

Crystal data

$C_{6}H_{9}N_{2}^{+} \cdot C_{2}H_{3}O_{2}^{-}$	Z = 2
$M_r = 168.20$	$D_x = 1.275 \text{ Mg m}^{-3}$
riclinic, P1	Mo $K\alpha$ radiation
a = 7.0451 (8) Å	Cell parameters from 7421
$\theta = 8.0502 (10) \text{ Å}$	reflections
= 8.5061 (10) Å	$\theta = 2.6-28.0^{\circ}$
$\alpha = 65.756 \ (9)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$B = 86.505 \ (9)^{\circ}$	T = 296 (2) K
$v = 85.326 \ (9)^{\circ}$	Thick plate, colourless
$V = 438.21 (10) \text{ Å}^3$	$0.64 \times 0.49 \times 0.24$ mm

 $\begin{array}{l} R_{\rm int}=0.073\\ \theta_{\rm max}=27.7^\circ\end{array}$

 $\begin{array}{l} h = -9 \rightarrow 8 \\ k = -10 \rightarrow 10 \end{array}$

 $l = -11 \rightarrow 11$

 $w = 1/[\sigma^2(F_0^2) + (0.054P)^2]$

+ 0.0553P] where $P = (F_0^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$

Data collection

Stoe IPDS-II diffractometer ω scans 7421 measured reflections 2054 independent reflections 1646 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.121$ S = 1.042054 reflections 145 parameters H atoms treated by a mixture of independent and constrained

independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

C1-N2	1.3258 (16)	C7-O2	1.2385 (15)
C1-N1	1.3491 (15)	C7-O1	1.2532 (15)
C5-N1	1.3536 (16)		
N2-C1-N1	117.94 (10)	O2-C7-O1	124.41 (12)
N2 - C1 - C2	123.09 (11)		. ,
N2-C1-C2-C3	178.99 (13)	N2-C1-N1-C5	-179.15 (12)

Fable 2			
Hydrogen-bond	geometry	(Å,	°).

D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.91 (2)	1.89 (2)	2.7992 (15)	179 (2)
0.90(2)	2.03 (2)	2.8426 (16)	150 (2)
1.01 (2)	1.64 (2)	2.6390 (14)	174 (2)
0.95 (2)	2.42 (2)	3.3566 (16)	166 (1)
1.01 (2)	2.60 (2)	3.605 (2)	172 (2)
	<i>D</i> -H 0.91 (2) 0.90 (2) 1.01 (2) 0.95 (2) 1.01 (2)	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.91 (2) & 1.89 (2) \\ 0.90 (2) & 2.03 (2) \\ 1.01 (2) & 1.64 (2) \\ 0.95 (2) & 2.42 (2) \\ 1.01 (2) & 2.60 (2) \\ \hline \end{array}$	$D-H$ $H\cdots A$ $D\cdots A$ 0.91 (2) 1.89 (2) 2.7992 (15) 0.90 (2) 2.03 (2) 2.8426 (16) 1.01 (2) 1.64 (2) 2.6390 (14) 0.95 (2) 2.42 (2) 3.3566 (16) 1.01 (2) 2.60 (2) 3.605 (2)

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x, -y + 1, -z + 1; (iii) x + 1, y, z.

Refined C-H distances are in the range 0.94 (2)–0.98 (2) Å and U_{iso} values for H atoms are in the range 0.056 (4)–0.097 (7) Å². The H

atoms bounded to C8 were refined as an idealized disordered methyl group (two positions, each of site occupancy 0.5) in their calculated positions, with $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}$ of the parent atom.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

- Acheson, R. M. (1967). An Introduction to the Chemistry of Heterocycles, 2nd ed., pp. 215–218. London: Wiley.
- Büyükgüngör, O. & Odabaşoğlu, M. (2002). Acta Cryst. C58, o691-o692.
- Büyükgüngör, O. & Odabaşoğlu, M. (2003). Acta Cryst. C59, o105-o106.
- Büyükgüngör, O., Odabaşoğlu, M., Albayrak, C. & Lönnecke, P. (2004). Acta Cryst. C60, 0470–0472.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Goswami, S. P. & Ghosh, K. (1997). Tetrahedron Lett. 38, 4503-4506.
- Goswami, S. P., Mahapatra, A. K., Nigam, G. D., Chinnakali, K. & Fun, H.-K. (1998). Acta Cryst. C54, 1301–1302.
- Grobelny, R., Glowiak, T., Mrozinski, J., Baran, W. & Tomasik, P. (1995). Pol. J. Chem. 69, 559–565.
- Inuzuka, K. & Fujimoto, A. (1986). Spectrochim. Acta A, 42, 929-937.
- Inuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 971-975.
- Lehn, J. M. (1992). J. Coord. Chem. 27, 3-6.
- Odabaşoğlu, M., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o51–o52.
- Odabaşoğlu, M., Büyükgüngör, O., Turgut, G., Karada, A., Bulak, E. & Lönnecke, P. (2003). J. Mol. Struct. 648, 133–138.
- Shanmuga Sundara Raj, S., Fun, H.-K., Lu, Z.-L., Xiao, W., Gong, X.-Y. & Gen, C.-M. (2000). Acta Cryst. C56, 1015–1016.
- Shanmuga Sundara Raj, S., Fun, H.-K., Zhao, P.-S., Jian, F.-F., Lu, L.-D., Yang, X.-J. & Wang, X. (2000). Acta Cryst. C56, 742–743.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Yang, R. N., Wang, D. M., Hou, Y. M., Xue, B. Y., Jin, D. M., Chen, L. R. & Luo, B. S. (1995). Acta Chem. Scand. 49, 771–773.